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a b s t r a c t

This paper is concerned with using artificial neural networks for modelling and temperature control of
a yeast fermentation biochemical reactor. At first, a neural model of the process is trained using avail-
able data sets generated from the fundamental model. The neural model is pruned in order to reduce
its complexity and to improve its prediction ability. Next, a computationally efficient nonlinear model
predictive control (MPC) algorithm with Nonlinear Prediction and Linearisation (MPC-NPL) which needs
solving on-line a quadratic programming problem is developed. It is shown that the algorithm results in
closed-loop control performance similar to that obtained in nonlinear MPC, which hinges on full on-line
non-convex optimisation. The computational complexity of the MPC-NPL algorithm is shown, the control
Neural networks
Optimisation
Linearisation
Q

accuracy and the disturbance rejection ability are also demonstrated in the case of noisy measurements
and disturbances affecting the process.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Model Predictive Control (MPC) refers to a class of computer
ontrol algorithms that directly use an explicit dynamic model in
rder to predict future behaviour of the process [19,32,36]. At each
ampling instant a predefined performance function is optimised
n-line. As a result, a future control policy is obtained, the first
lement of which is actually applied to the process and the whole
rocedure is repeated.

MPC is recognised as the only one among advanced control
echniques (defined as techniques more advanced than the PID
pproach) which has been exceptionally successful in numer-
us practical applications including chemical engineering, food
rocessing, robotics, automotive and aerospace [31]. Because a

ynamic model is used to predict future behaviour of the process,
PC algorithms have a unique ability to take into account con-

traints imposed on both process inputs (manipulated variables)
nd outputs (controlled variables) or states. Constraints are very
mportant, they usually determine quality, economic efficiency and
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afety. Moreover, MPC techniques are very efficient in multivariable
rocess control.

If it is possible, MPC algorithms based on linear models should
e used because of low computational complexity [19,36]. Since
roperties of many technological processes are nonlinear, different
onlinear MPC techniques have been developed [9,24,31,36]. The
tructure of the nonlinear model and the way it is used on-line affect
he accuracy, the computational burden and the reliability of non-
inear MPC. Fundamental (first-principle) models [15,21], although
otentially very precise, are usually not suitable for on-line con-
rol. Such models are comprised of systems of nonlinear differential
nd algebraic equations which have to be solved on-line in MPC.
uch an approach is usually computationally demanding as fun-
amental models can be very complex and may lead to numerical
roblems (e.g. stiffness, ill-conditioning). Moreover, in many cases
evelopment of fundamental models is difficult.

In recent years neural networks [8] have been frequently used
or modelling and control of nonlinear processes [12,25,36]. It
s because they have many advantages. More specifically, neural
etworks are universal approximators [10], hence they may be
sed to approximate nonlinear behaviour of technological dynamic

rocesses. Neural networks are trained using available data sets,
he necessity of developing complicated fundamental models is
voided. Unlike fundamental models, neural models have sim-
le structures and relatively small numbers of parameters. As a
esult, numerical problems typical of MPC algorithms based on

http://www.sciencedirect.com/science/journal/13858947
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Nomenclature

Notation
0i×j the zeros matrix of dimensionality i × j
al, bl coefficients of the linear model
al(x̄(k)), bl(x̄(k)) coefficients of the linearised model
AQP, bQP definition of constraints in a quadratic program-

ming problem
AT heat transfer area (m2)
A1, A2 exponential factors in Arhenius equation
cO2 oxygen concentration in the liquid phase (mg/l)
c∗

O2
equilibrium concentration of oxygen in the liquid
phase (mg/l)

c∗
O2,0 equilibrium concentration of oxygen in distilled

water (mg/l)
cP product (ethanol) concentration (g/l)
cS substrate (glucose) concentration (g/l)
cS,in glucose concentration in the feed flow (g/l)
cX biomass (yeast) concentration (g/l)
Cheat,ag heat capacity of the cooling agent (J g−1 K−1)
Cheat,r heat capacity of the mass of the reaction (J g−1 K−1)
d(k) estimation of the unmeasured disturbance
Ea1 , Ea2 activation energy (J/mol)
f neural model of the process
fQP, HQP definition of the objective function in the a quadratic

programming problem
Fag flow of the cooling agent (l/h)
Fe outlet flow from the reactor (l/h)
Fi flow of the substrate entering the reactor (l/h)
G(k) the dynamic matrix
Hi specific ionic constant of ion i (i = Ca, Cl, CO3, H, Mg,

Na, OH)
Ii ionic strength of ion i (i = Ca, Cl, CO3, H, Mg, Na, OH)
I i×j the identity matrix of dimensionality i × j
Iu, Iuf (p), Iyp(p) auxiliary coefficients in MPC-NPL
J(k) the objective function of MPC
JNPL an auxiliary matrix in MPC-NPL
k discrete time (the current sampling instant)
(kla) product of the mass-transfer coefficient for oxygen

and gas-phase specific area h−1

(kla)0 product of the mass-transfer coefficient at 20 ◦ C for
O2 and gas-phase specific area h−1

K the number of hidden nodes in the neural network
KO2 constant for oxygen consumption (mg/l)
KP constant of growth inhibition by ethanol (g/l)
KP1 constant of fermentation inhibition by ethanol (g/l)
KS constant in the substrate term for growth (g/l)
KS1 constant in the substrate term for ethanol produc-

tion (g/l)
KT heat transfer coefficient (J h−1 m−2 K−1)
M1, M2, M3 auxiliary matrices in MPC-NPL
mi quantity of inorganic salt i (i = CaCO3, MgCl2, NaCl)

(g)
Mi molecular/atomic mass of salt/ion i (g/mol)
nAnB definition of the order of the dynamics
N, Nu prediction and control horizon, respectively
rO2 rate of oxygen consumption (mg l−1 h−1)
R universal gas constant (J mol−1 K−1)
RSP ratio of ethanol produced per glucose consumed for

fermentation
RSX ratio of cell produced per glucose consumed for

growth
SSE sum of squared errors

si(k) step-response coefficients of the linearised model
S1

i,j
, S2

i
saliency coefficients

t continuous time (h)
Tag temperature of the cooling agent in the jacket (◦C)
Tin temperature of the substrate flow entering to the

reactor (◦C)
Tin,ag temperature of the cooling agent entering to the

jacket (◦C)
Tr temperature in the reactor (◦C)
T ref

r reference trajectory of the temperature in the reac-
tor (◦C)

u input of the model/proces
umin, umax, umin, umax definition of constraints of the manip-

ulated variable in MPC
uNPL(k) an auxiliary vector in MPC-NPL
V volume of the mass of the reaction (l)
Vj volume of the jacket (l)
w1

i,j
, w2

i
weights of the neural network

x̄(k) the linearisation point in MPC-NPL
xQP solution to the quadratic programming problem
ymin, ymax, ymin, ymax definition of constraints of the con-

trolled variable in MPC
y output of the model/proces
y0(k + p|k), y0(k) the free trajectory
yref(k + p|k), yref(k) the reference trajectory
ŷ(k + p|k), ŷ(k) predicted trajectory of the controlled variable
YO2 the amount of oxygen consumed per unit biomass

produced (mg/mg)
zi(k) sums of inputs of the ith hidden node of the neural

network

Greek symbols
�Hr reaction heat of fermentation (kJ/mol O2 consumed)
�u(k + p|k), �u(k) future increments of the manipulated

variable
�umax, �umax definition of constraints of the manipulated

variable in MPC
εmin, εmax slack variables in MPC optimisation problem
ϕ transfer function of the hidden nodes of the neural

network
�O2 maximum specific oxygen consumption rate (h−1)
�P maximum specific fermentation rate (h−1)
�X maximum specific growth rate (h−1)
�p, � weights in MPC
�ag density of the cooling agent (g/l)
�min, �max weighting coefficients in MPC optimisation prob-

lem

c
n
v
b
o
[

f
b
o
i

� density of the mass of the reaction (g/l)
� discrete-time delay

omprehensive fundamental models are not encountered because
eural models directly describe input–output relations of process
ariables, complicated systems of nonlinear differential and alge-
raic equations do not have to be solved on-line. Different versions
f MPC algorithms based on neural models have been developed
2,14,17,18,25,28,29,30,36–39].

This paper is concerned with using artificial neural networks

or modelling and temperature control of a yeast fermentation
iochemical reactor the fundamental model of which is thor-
ughly described in [26]. Alcoholic fermentation is one of the most
mportant biochemical processes. Its significance has significantly
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where zi(k) are sums of inputs of the ith hidden node, ϕ : � → �
is the nonlinear transfer function (e.g. the hyperbolic tangent), K is
the number of hidden nodes. Recalling the input arguments of the
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ncreased recently because ethanol can be viewed as an alternative
ource of energy (biofuel). Because the process exhibits signifi-
antly nonlinear behaviour, the classical PID controller and the MPC
lgorithm based on a linear model are unable to control the process
fficiently as demonstrated in [26]. In [26] a fully-fledged nonlinear
PC algorithm in which a nonlinear optimisation problem has to

e solved at each sampling instant on-line is developed. As a com-
utationally efficient alternative, an easy to implement controller
ased on an inverse model of the process is recommended.

In this paper a computationally efficient MPC approach to tem-
erature control of a yeast fermentation biochemical reactor is
ecommended. At first, the neural model of the process is trained
sing available data sets generated from the fundamental model. In
rder to reduce the complexity of the neural model and to improve
ts prediction ability the neural network is pruned using the Opti-

al Brain Damage algorithm [13]. Next, a computationally efficient
onlinear MPC algorithm with Nonlinear Prediction and Linearisa-
ion (MPC-NPL) [16–18,36,37] developed by the author of this paper
s used. The algorithm needs solving on-line a quadratic program-

ing problem. It is shown that the algorithm results in closed-loop
ontrol performance similar to that obtained in nonlinear MPC,
hich hinges on full on-line non-convex optimisation. The compu-

ational complexity of the algorithm is shown, the control accuracy
nd the disturbance rejection ability are also demonstrated in the
ase of noisy measurements and disturbances affecting the process.

This paper is organised as follows. Section 2 shortly presents the
eneral idea of MPC, describes the structure of the neural model and
etails the MPC-NPL algorithm. Next, in Section 3, the fundamen-
al model of the yeast fermentation biochemical reactor is shortly
resented, development of the neural model is described and simu-

ation results of MPC algorithms based on linear and neural models
re presented and discussed. Finally, Section 4 concludes the paper.

. Computationally efficient model predictive control
ased on neural models

.1. Model predictive control problem formulation

Although a number of different MPC techniques have been
eveloped over the years, the main idea (i.e. the explicit applica-
ion of a process model, optimisation of a cost function and the
eceding horizon approach) is always the same [19,32,36]. More
pecifically, at each consecutive sampling instant, k, a set of future
ontrol increments is calculated

u(k) = [�u(k|k) . . . �u(k + Nu − 1|k)]T (1)

It is assumed that �u(k + p|k) = 0 for p ≥ Nu, where Nu is the
ontrol horizon. Usually, the objective is to minimise differences
etween the reference trajectory yref(k + p|k) and predicted values
f the output ŷ(k + p|k) over the prediction horizon N ≥ Nu and to
enalise excessive control increments. The following quadratic cost
unction is typically used

J(k) =
N∑

p=1

(yref(k + p|k) − ŷ(k + p|k))
2

+
Nu−1∑
p=0

�p(�u(k + p|k))2

(2)
here �p > 0 are weighting factors. Only the first element of the
etermined sequence (1) is actually applied to the process

(k) = �u(k|k) + u(k − 1) (3)
g Journal 145 (2008) 290–307

At the next sampling instant, k + 1, the prediction is shifted one
tep forward, the output measurement is updated and the whole
rocedure is repeated.

Since constraints have to be usually taken into account, future
ontrol increments are determined from the following optimization
roblem

min
�u(k|k)...�u(k+Nu−1|k)

{J(k)}
subject to
umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1
−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1
ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

(4)

The general prediction equation for p = 1, . . . , N is

ˆ(k + p|k) = y(k + p|k) + d(k) (5)

here quantities y(k + p|k) are calculated from a dynamic model
f the process. The “DMC type” disturbance model is used in which
he unmeasured disturbance d(k) is assumed to be constant over
he prediction horizon [36]. It is estimated from

(k) = y(k) − y(k|k − 1) (6)

here y(k) is measured while y(k|k − 1) is calculated from the
ynamic model.

.2. Neural model of the process

Predicted values of the output signal, ŷ(k + p|k), over the predic-
ion horizon N are calculated from (5) using a dynamic model of the
rocess. Let the Single-Input Single-Output (SISO) process under
onsideration be described by the following nonlinear discrete-
ime equation

y(k) = f (u(k − �), . . . , u(k − nB) ,

y(k − 1), . . . , y(k − nA))
(7)

here f : �nA+nB−�+1 → �, � ≤ nB. A feedforward Multi Layer Per-
eptron (MLP) neural network with one hidden layer and a linear
utput [8] is used as the function f in (7). The structure of the neural
odel is depicted in Fig. 1. Output of the model can be expressed

s

(k) = w2
0 +

K∑
w2

i ϕ(zi(k)) (8)
Fig. 1. The structure of the neural model.
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eneral nonlinear model (7) one has

zi(k) = w1
i,0 +

Iu∑
j=1

w1
i,ju(k − � + 1 − j)

+
nA∑
j=1

w1
i,Iu+jy(k − j)

(9)

here Iu = nB − � + 1. Weights of the network are denoted by w1
i,j

,

= 1, . . . , K , j = 0, . . . , nA + nB − � + 1, and w2
i
, i = 0, . . . , K , for the

rst and the second layer, respectively.
Using the general prediction Eq. (5) and the nonlinear neural

odel defined by (8) and (9), output predictions over the prediction
orizon are calculated from

ˆ(k + p|k) = w2
0 +

K∑
i=1

w2
i ϕ(zi(k + p|k)) + d(k) (10)

Considering the prediction of the output over the horizon N for
sampling instant k + p calculated at the current sampling instant
, the quantities zi(k + p|k) and consequently ŷ(k + p|k) depend on
uture control signals (i.e. decision variables of the MPC algorithm),
ontrol signal values applied to the plant at previous sampling
nstants, future output predictions and measured values of the
lant output signal. From (9) one has

zi(k + p|k) = w1
i,0 +

Iuf (p)∑
j=1

w1
i,ju(k − � + 1 − j + p|k)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − � + 1 − j + p)

+
Iyp(p)∑
j=1

w1
i,Iu+jŷ(k − j + p|k)

+
nA∑

j=Iyp(p)+1

w1(i, Iu + j)y(k − j + p)

(11)

here Iuf (p) = max(min(p − � + 1, Iu), 0) and Iyp(p) = min(p −
, nA). Using (6), the unmeasured disturbance is estimated from

(k) = y(k) −
(

w2(0) +
K∑

i=1

w2(i)ϕ(zi(k))

)
(12)

.3. MPC-NPL optimisation problem

If for prediction the nonlinear neural model is used without
ny simplifications, predictions ŷ(k + p|k) are nonlinear functions
f future control moves (1). In such a case the nonlinear MPC
ptimisation problem (4) has to be solved on-line at each sam-
ling instant. Although in theory such an approach seems to be
otentially very precise, it has limited practical applicability. It is
ecessary to emphasise the fact that the difficulty of the nonlinear
PC optimization problem is twofold. First of all, it is nonlinear,

omputationally demanding, its computational burden is big. Sec-
ndly, it may be non-convex and even multi-modal. Unfortunately,
or such problems there are no sufficiently fast and reliable opti-

ization algorithms, i.e. those which would be able to determine
he global optimal solution at each sampling instant and within a

redefined time limit as it is required in on-line control.

Bearing in mind difficulties typical of MPC with on-line non-
inear optimisation, in this paper the MPC scheme with Nonlinear
rediction and Linearisation (MPC-NPL) [16–18,36,37]. is used. The
lgorithm is computationally efficient, it requires solving on-line

u

�

u

ig. 2. The structure of the MPC algorithm with Nonlinear Prediction and Lineari-
ation (MPC-NPL).

nly a quadratic programming problem. The structure of the algo-
ithm is depicted in Fig. 2. At each sampling instant k the neural
odel is used on-line twice: to determine a local linearisation and
nonlinear free trajectory. It is assumed that the output prediction
an be expressed as the sum of a forced trajectory, which depends
nly on the future (i.e. on future input moves �u(k)) and the free
rajectory y0(k), which depends only on the past

ˆ(k) = G(k)�u(k) + y0(k) (13)

here y0(k) = [y0(k + 1|k) . . . y0(k + N|k)]
T
. The dynamic matrix

(k) of dimensionality N × Nu is comprised of step-response coef-
cients of the linearised model

(k) =

⎡
⎢⎢⎣

s1(k) 0 . . . 0
s2(k) s1(k) . . . 0

...
...

. . .
...

sN(k) sN−1(k) . . . sN−Nu+1(k)

⎤
⎥⎥⎦ (14)

Both the free trajectory and the dynamic matrix are calculated
n-line from the nonlinear neural model taking into account the
urrent state of the process. The implementation of the algorithm
s described in more details in the following subsection.

On the one hand, the suboptimal prediction calculated from (13)
s different from the optimal one determined from the nonlinear
eural model as it is done in the MPC algorithm with nonlinear
ptimization [17,36,37]. On the other hand, thanks to using the
uboptimal prediction, the optimisation problem (4) becomes the
ollowing quadratic programming task

min
�u(k)

‖yref(k) − G(k)�u(k) − y0(k)‖2 + ‖�u(k)‖2
�

subject to
umin ≤ JNPL�u(k) + uNPL(k) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin ≤ G(k)�u(k) + y0(k) ≤ ymax

(15)

here

ref = [yref(k + 1|k) . . . yref(k + N|k)]
T

(16)

min = [ymin . . . ymin]
T

(17)

max = [ymax . . . ymax]T (18)

re vectors of length N,

min = [umin . . . umin]
T

(19)
max = [umax . . . umax]T (20)

umax = [�umax . . . �umax]T (21)

NPL(k) = [u(k − 1) . . . u(k − 1)]T (22)
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re vectors of length Nu, � = diag(�0, . . . , �Nu−1), JNPL is the all ones
ower triangular matrix of dimensionality Nu × Nu.

If output constraints have to be taken into account, the MPC-NPL
ptimisation task (15) may be affected by the infeasibility problem,
.e. the admissible set of the optimization problem may be empty.
n order to cope with such a situation, output constraints have
o be softened by means of slack variables [19,36]. The MPC-NPL
uadratic programming problem becomes

min
�u(k),εmin,εmax

⎧⎨
⎩

‖yref(k)−y0(k)−G(k)�u(k)‖2+‖�u(k)‖2
�

+�min‖εmin‖2+�max‖εmax‖2

⎫⎬
⎭

subject to

umin ≤ J�u(k) + uk−1(k) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin − εmin ≤ y0(k) + G(k)�u(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0

(23)

A quadratic penalty for constraint violations is used in the MPC
ptimisation problem (23), εmin and εmax are vectors of length N
omprising the slack variables and �min, �max > 0 are weights.

Let xQP = [�uT(k)(εmin)
T
(εmax)T]

T
be a vector containing all

ecision variables of the MPC-NPL algorithm. The optimisation
roblem (23) can be easily rewritten in a standard quadratic pro-
ramming (QP) form

min
xQP

{ 1
2 xT

QPHQPxQP + f T
QPxQP}

subject to
AQPxQP ≤ bQP

(24)

here

u(k) = M1xQP, M1 = [INu×Nu 0Nu×2N] (25)

min = M2xQP, M2 = [0N×Nu IN×N0N×N] (26)

max = M3xQP, M3 = [0N×Nu 0N×NIN×N] (27)

The cost function in the QP problem (24) is defined by

HQP = 2(MT
1GT(k)G(k)M1 + MT

1�M1)

+2�minMT
2M2 + 2�maxMT

3M3

(28)

QP = −2MT
1GT(k)(yref(k) − y0(k)) (29)

hereas constraints by

QP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−JM1
JM1

−G(k)M1 − M2
G(k)M1 − M3

−M1
M1

−M2
−M3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fQP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−umin + uk−1(k)
umax − uk−1(k)
−ymin + y0(k)
ymax − y0(k)

�umax

�umax

0N×1
0N×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

As shown in Fig. 2, in the MPC-NPL algorithm at each sampling
nstant k the following steps are repeated:

1. Linearisation of the neural model: obtain step response coeffi-
cients s1(k), . . . , sN(k) comprising the dynamic matrix G(k).

. Calculate the nonlinear free trajectory y0(k) using the neural

model.

. Solve the quadratic programming problem (24) to determine
�u(k).

. Apply u(k) = �u(k|k) + u(k − 1).

. Set k := k + 1, go to step 1.
h
e

g Journal 145 (2008) 290–307

It has to be pointed out that the general idea of computing the
ptimal control law for the current linear approximation of the
onlinear model is known from the literature [9,24]. If the con-
traints are not taken into account, such an approach leads to the
olution of a state-dependent Riccati equation, it is known as the
frozen Riccati equation technique”. An important feature of the
nconstrained case is the fact that its stability properties [11,27]
an be analysed in significantly easier way in comparison with the
onstrained one [20]. Because of the same reason and the simplic-
ty of implementation, unconstrained MPC algorithms which use
he local linearisation approach are frequently considered in the
iterature [22,36].

In practice stability of the MPC-NPL algorithm can be achieved
y proper tuning of the prediction horizon and weighting coeffi-
ients �p. Furthermore, the algorithm can be combined with the
tabilising dual-mode approach [23] as detailed in [16].

.4. On-line linearisation of the neural model and calculation of
he nonlinear free trajectory

Defining the linearisation point as a vector x̄(k) composed of past
nput and output signal values corresponding to the arguments of
he nonlinear model (7)

¯ (k) = [ū(k − �) . . . ū(k − nB)ȳ(k − 1) . . . ȳ(k − nA)]T (31)

nd using Taylor series expansion at this point, the linear approx-
mation of the nonlinear model, obtained at a sampling instant k,
an be expressed as

y(k) = f (x̄(k)) +
nB∑
l=1

bl(x̄(k))(u(k − l) − ū(k − l + 1))

−
nA∑
l=1

al(x̄(k))(y(k − l) − ȳ(k − l + 1))

(32)

here al(x̄(k)) = −(∂f (x̄(k)))/(∂y(k − l)) and bl(x̄(k)) =
∂f (x̄(k)))/(∂u(k − l)) are coefficients of the linearised model.
aking into account the structure of the neural model shown in
ig. 1 and defined by (8) and (9) one obtains

l(x̄(k)) = −
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,Iu+l (33)

here l = 1, . . . , nA, and

l(x̄(k)) =

⎧⎪⎨
⎪⎩

0 if l = 1, . . . , � − 1
K∑

i=1

w2
i

dϕ(zi(x̄(k)))
dzi(x̄(k))

w1
i,l−�+1 if l = �, . . . , nB

(34)

If hyperbolic tangent is used as the nonlinear transfer func-
ion ϕ in the hidden layer of the neural model, one has
dϕ(zi(x̄(k))))/(dzi(x̄(k))) = 1 − tanh2(zi(x̄(k))).

Step-response coefficients of the linearised model comprising
he dynamic matrix G(k) given by (14) are determined from

sj(k) =
min(j,nB)∑

i=1

bi(x̄(k))

−
min(j−1,nA)∑

ai(x̄)(k)sj−i(k)

(35)
i=1

The nonlinear free trajectory y0(k + p|k) over the prediction
orizon, i.e. for p = 1, . . . , N, is calculated recursively from the gen-
ral prediction Eq. (5) assuming only the influence of the past. The
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M. Ławryńczuk / Chemical Engi

DMC type” disturbance model (12) is also used. Using (10), one has

0(k + p|k) = w2
0 +

K∑
i=1

w2
i ϕ(z0

i (k + p|k)) + d(k) (36)

Quantities z0
i
(k + p|k) are determined from (11) assuming no

hanges in control signals from a sampling instant k onwards
nd replacing the output predictions by corresponding values of
he free trajectory, i.e. u(k + p|k) := u(k − 1) for p ≥ 0, ŷ(k + p|k) :=
0(k + p|k) for p ≥ 1. One has

zi(k + p|k) = w1
i,0 +

Iuf (p)∑
j=1

w1
i,ju(k − 1)

+
Iu∑

j=Iuf (p)+1

w1
i,ju(k − � + 1 − j + p)

+
Iyp(p)∑
j=1

w1
i,Iu+jy

0(k − j + p|k)

+
nA∑

j=Iyp(p)+1

w1
i,Iu+jy(k − j + p)

(37)

. Experiments

.1. Biochemical reactor

The considered yeast fermentation biochemical reactor is shown
n Fig. 3. The reactor is modelled as a continuous stirred tank with
onstant substrate feed flow, the outlet flow from the reactor con-
aining the product, the substrate and the biomass is also constant.
he reactor contains three distinct components: the biomass, which
s a suspension of yeast fed into the system and evacuated contin-
ously, the substrate, which is the solution of glucose feeding the
icro-organism (charomyces cerevisiae) and the product (ethanol),
hich is evacuated together with other components. Together with

east, inorganic salts are added. It is necessary for the formation
f coenzymes. Inorganic salts have also a strong influence on the

quilibrium concentration of oxygen in the liquid phase. Because a
ow dilution rate is necessary, the process has very slow dynamic
roperties.

The comprehensive fundamental model of the process is
escribed in [26], here the model is given in a compact form for

Fig. 3. The continuous yeast fermentation reactor control system structure.
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ompleteness of presentation. The model contains the detailed
inetic model, it takes into account the heat transfer, the depen-
ence of kinetic parameters on temperature, the mass transfer of
xygen, the influence of the temperature and the ionic strength on
he mass transfer coefficient. Let state variables be defined as fol-
ows: V—the volume of the mass of the reaction (l), cX—the biomass
yeast) concentration (g/l), cP—the product (ethanol) concentration
g/l), cS—the substrate (glucose) concentration (g/l), cO2 —oxygen
oncentration in the liquid phase (mg/l), Tr—the temperature of the
eactor (◦C), Tag—the temperature of the cooling agent in the jacket
◦C). The reactor is described by the following continuous-time
undamental model containing 7 nonlinear ordinary differential
quations

dV

dt
= Fi − Fe (38)

dcX

dt
= �XCX

cS

KS + cS
exp(−KPcP) − Fe

V
cX (39)

dcP

dt
= �PCX

cS

KS1 + cS
exp(−KP1 cP) − Fe

V
cP (40)

dcS

dt
= − 1

RSX
�XcX

cS

KS + cS
exp(−KPcP)

− 1
RSP

�PcX
cS

KS1 + cS
exp(−KP1 cP)

+Fi

V
cS,in − Fe

V
cS

(41)

dcO2

dt
= (kla)(c∗

O2
− cO2 ) − rO2 − Fe

V
cO2 (42)

dTr

dt
= Fi

V
(Tin + 273) − Fe

V
(Tr + 273)

+ rO2 �Hr

32�rCheat,r
− KT AT (Tr − Tag)

V�rCheat,r

(43)

dTag

dt
= Fag

Vj
(Tin,ag − Tag) + KT AT (Tr − Tag)

Vj�agCheat,ag
(44)

The equilibrium concentration of oxygen in the liquid phase is

∗
O2

= (14.6 − 0.3943Tr + 0.007714T2
r − 0.0000646T3

r )10−
∑

HiIi

(45)

here the global effect of ionic strengths is∑
HiIi = 0.5HNa

mNaCl

MNaCl

MNa

V
+ 2HCa

mCaCO3

MCaCO3

MCa

V

+2HMg
mMgCl2
MMgCl2

MMg

V
+0.5HCl

(
mNaCl

MNaCl
+ 2

mMgCl2
MMgCl2

)
MCl

V

+2HCO3

mCaCO3

MCaCO3

MCO3

V
+0.5HH10−pH + 0.5HOH10−(14−pH)

(46)

The mass transfer coefficient for oxygen is

kla) = (kla)01.024Tr−20 (47)

The rate of oxygen consumption is

O2 = �O2

1
YO2

cX
cO2

KO2 + cO2

(48)

The maximum specific growth rate is
X = A1 exp
(

− Ea1

R(Tr + 273)

)
− A2 exp

(
− Ea2

R(Tr + 273)

)
(49)

Parameters of the fundamental model are given in Table 1 while
ominal operating conditions of the process are given in Table 2.
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Table 1
Parameters of the fundamental model

A1 = 9.5 × 108 (kla)0 = 38 h−1 MMg = 24 g/mol
A2 = 2.55 × 1033 KO2

= 8.86 mg/l MMgCl2 = 95 g/mol
AT = 1 m2 KP = 0.139 g/l MNa = 23 g/mol
Cheat,ag = 4.18 J g−1 K−1 KP1 = 0.07 g/l MNaCl = 58.5 g/mol
Cheat,r = 4.18 J g−1 K−1 KS = 1.03 g/l R = 8.31 J mol−1 K−1

Ea1 = 55, 000 J/mol KS1
= 1.68 g/l RSP = 0.435

Ea2 = 220,000 J/mol KT = 3.6 × 105 J h−1 m−2 K−1 RSX = 0.607
HCa = −0.303 mCaCO3

= 100 g Vj = 50 l
HCl = 0.844 mMgCl2 = 100 g YO2

= 0.97 mg/mg
HCO3

= 0.485 mNaCl = 500 g �Hr = 518 kJ/molØ2
HH = −0.774 MCa = 40 g/mol �O2

= 0.5 h−1

HMg = −0.314 MCaCO3
= 90 g/mol �P = 1.79 h−1

HNa = −0.550 MCl = 35.5 g/mol �ag = 1000 g/l
HOH = 0.941 MCO3

= 60 g/mol �r = 1080 g/l

Table 2
Nominal operating conditions of the process

cO2
= 3.106953 mg/l pH 6

cP = 12.515241 g/l Tag = 27.053939 ◦C
cS = 29.738924 g/l Tin = 25 ◦C
c
c
F
F

b
t
o
b
f
T

c
o
o
e
T
a
r
o

3

t

Fig. 5. Open-loop step-responses of the reactor caused by increasing (solid line) and
decreasing (dashed line) the flow of the cooling agent Fag by 18 l/h at k = 1.
S,in = 60 g/l Tin,ag = 15 ◦C

X = 0.904677 g/l Tr = 29.573212 ◦C
ag = 18 l/h V = 1000 l

i = Fe = 51 l/h

As shown in Fig. 3, the temperature of the reactor Tr is controlled
y manipulating the flow of the cooling agent Fag. It means that from
he perspective of a control engineer, the considered process has
ne input (Fag) and one output (Tr). The process exhibits nonlinear
ehaviour. Both steady-state and dynamic properties of the yeast
ermentation reactor are nonlinear. The steady-state characteristic
r(Fag) is shown in Figs. 4 and 5 depict open-loop step-responses.

As discussed in [26], two main disturbances can be considered:
hanges in the substrate concentration cS and in the temperature
f the substrate flow entering the reactor Tin, but only the second
ne has a significant effect on the process and should be consid-
red as an important disturbance. The steady-state characteristic
r(Fag, Tin), which shows the dependence of the flow of the cooling
gent and the temperature of input flow on the temperature of the
eactor is depicted in Fig. 6. Fig. 7 shows open-loop step-responses
f the reactor to a changes in the temperature of the substrate flow.
.2. Yeast fermentation reactor modelling for control

For identification the fundamental model (38)–(49) is used as
he real process, it is simulated open-loop in order to obtain two

Fig. 4. The steady-state characteristic Tr(Fag) of the reactor.

Fig. 6. The steady-state characteristic Tr(Fag, Tin) of the reactor.

Fig. 7. Open-loop step-responses of the reactor caused by increasing (solid line)
and decreasing (dashed line) the temperature Tin of the substrate flow entering the
reactor by 1 ◦ C at k = 1.
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g and test data sets.
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Table 3
The influence of the number of hidden nodes K on the complexity and the accuracy
of neural models for training and test data sets

K No. of weights SSEtraining SSEtest

3 19 1.097013 × 10−1 2.991501 × 10−1

4 25 7.638250 × 10−2 1.235549 × 10−1

5 31 7.073799 × 10−2 9.913449 × 10−2

6
7
8

t
g
m
a
u
t
i
u
index as the objective function. For each neural model structure
the identification experiment is repeated 10 times, weights of neu-
ral networks are initialised randomly. The results presented are the
best obtained.
Fig. 8. Trainin

ets of data, namely training and test data sets depicted in Fig. 8.
oth sets contain 3000 samples. Because the dynamic properties of
he process are very slow, the sampling time is 30 min. The output
ignal contains small measurement noise. During simulations the
ystem of differential equations comprising the fundamental model
s solved. The standard method (Runge-Kutta 45, the solver ODE45
n Matlab) is inefficient because the problem is stiff. More specifi-
ally, it requires a very big number of iterations (steps). For example,
n order to obtain open-loop step-responses of the reactor shown in
ig. 5 the solver RK45 needs as many as 24128 steps when the flow
f the cooling agent Fag is decreased and 16460 steps when the flow
n increased. That is why the specialised solver ODE23S [33] for stiff
ifferential equations is used (it is based on a modified Rosenbrock
ormula of order two). For the same open-loop step-responses this
olver requires as few as 24 and 20 steps, respectively.

During model identification the following Sum of Squared Errors
SSE) performance function is minimized

SE =
∑

k ∈ data set

(y(k|k − 1) − y(k))2 (50)

here y(k|k − 1) denotes the output of the model for the sampling
nstant k calculated using signals up to the sampling instant k − 1,
(k) is the real value of the process output variable collected during
he identification experiment.

Second-order dynamic neural models

(k) = f (u(k − 1), u(k − 2), y(k − 1), y(k − 2)) (51)

re considered. Because input and output process variables
ave different orders of magnitude, they are scaled as u =
.01(Fag − Fag,nom), y = 0.1(Tr − Tr,nom) where Fag,nom = 18 l/h,
r,nom = 29.573212 ◦C correspond to the nominal operating con-
itions of the process (Table 2). All compared neural models
ave the same input arguments determined by � = 1, nA = nB = 2,
he difference is in the number of hidden nodes K. Neural net-
orks containing K = 3, 4, 5, 6, 7, 8 hidden nodes are considered.

econd-order dynamic models are used because first-order ones
urn out to be insufficiently accurate while third-order structures
o not improve the accuracy significantly. The hyperbolic tangent
ransfer function is used in the hidden layer.
Table 3 compares the accuracy of neural models in terms of
um of Squared Errors for training and test data sets, total num-
ers of parameters (weights) are also given. The influence of the
umber of hidden nodes K on the accuracy of neural models for
raining and test data sets is also depicted in Fig. 9. Different

F
m

37 6.698869 × 10−2 9.858591 × 10−2

43 6.031582 × 10−2 1.473690 × 10−1

49 5.617879 × 10−2 1.719373 × 10−1

raining algorithms have been tested: the rudimentary backpropa-
ation scheme (i.e. the steepest descent), the conjugate gradient
ethods (Polak-Ribiere, Fletcher-Reeves) and the quasi-Newton

lgorithms (DFP, BFGS) [1]. Finally, all neural models are trained
sing the BFGS algorithm, which outperforms all the aforemen-
ioned competitors in terms of learning time. Such an observation
s not surprising, since neural network training task is in fact an
nconstrained minimisation problem with the SSE performance
ig. 9. The influence of the number of hidden nodes K on the accuracy of neural
odels for training and test data sets.
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Fig. 10. The structure of the neural m

On the one hand, increasing the number of hidden nodes leads
o reducing the SSE performance index for the training data set.
n the other hand, it is a well known fact that neural models with

oo many parameters (weights) have poor generalisation abilities
overfitting). It is easily observed in the case of the considered neu-
al models of the yeast fermentation reactor. For the test data set the
alue of the SSE performance index rapidly increases when K ≥ 7.
he model which is next used in MPC algorithms should have good
rediction accuracy and be relatively uncomplicated. Considering
eural models whose parameters are summarised in Table 3, the
odel with K = 5 hidden nodes is chosen as a reasonable com-

romise between the accuracy and the complexity. Of course, one
an also choose the model containing K = 6nodes, but its SSE is
nly 5.30% (the training data set) and only 0.55% (the test data
et) smaller whereas it has 6 weights more, which means that its
omplexity is 19.35% bigger.

In order to further improve the accuracy of the neural model
nd to reduce the number of weights the neural network can be

runed. In [26] a version of the Optimal Brain Surgeon (OBS) prun-

ng algorithm [7] detailed in [6] is used. In this paper the Optimal
rain Damage (OBD) algorithm [13] is used. In comparison with
he OBS algorithm its implementation is simpler, but it results in
imilar reduction of the model complexity. For pruning, the OBD

S

w
t

Fig. 11. Top: the process (solid line with points) vs. the neural model (dashed lin
efore (left) and after pruning (right).

lgorithm uses information of second-order derivatives of the SSE
erformance function which is minimised during training. The
econd-order Taylor expansion of SSE about its minimum is used.
he objective is to find a set of weights whose removing is likely to
esult in the least change in SSE. In order to achieve reasonable low
omputational complexity, only diagonal terms of the second-order
aylor expansion are included into the definition of the saliency of
arameters. This corresponds to the assumption that the Hessian
atrix is diagonal. A weight of the network is removed when its

aliency is small. For the first layer of the network the saliency is
efined as

1
i,j = 1

2
∂2 SSE

∂(w1
i,j

)
2

(w1
i,j)

2
(52)

here i = 1, . . . , K , j = 0, . . . , nA + nB − � + 1. For the second layer
he saliency is

1 ∂2 SSE 2
2
i =

2 ∂(w2
i
)
2

(w2
i ) (53)

here i = 0, . . . , K . (∂2 SSE)/(∂(w1
i,j

)
2
) and (∂2 SSE)/(∂(w2

i
)
2
) denote

he second-order derivatives of the SSE performance function with

e with circles) for training and test data sets; bottom: prediction errors.
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Fig. 12. The process (solid line) vs. the linear

espect to weights of the first and the second layer, respectively.
he OBD pruning algorithm can be summarized as follows:

1. Train the rudimentary neural network.
. Calculate saliency coefficients S1

i,j
and S2

i
.

. Eliminate one weight the saliency of which is the smallest.

. Retrain the neural network.

. Stop if pruning results in increasing the SSE performance index.

. Go to step 2.

Initially, the neural network contains 5 hidden nodes, it has has
1 weights. As a result of the OBD pruning algorithm, 12 weights
re removed, which means that the complexity of the rudimen-
ary neural network is reduced by 38%. The structure of the neural
etwork before and after pruning is shown in Fig. 10. The SSE per-

ormance index of the pruned neural network for the training data
et is 6.827791 × 10−2, which means that the accuracy of the model
s very close to that of the rudimentary (i.e. not pruned) model con-

aining K = 6 hidden nodes (Table 3). Additionally, for the test data
et the SSE performance index is 9.219128 × 10−2. Fig. 11 shows
he output of the process and the output of the neural model for
oth training and test data sets. Because the accuracy of the neu-
al model is very high, prediction errors are also shown. All things

m
t
c
A
i

Fig. 13. The process (solid line) vs. the nonlinear polynomi
l (dashed line) for training and test data sets.

onsidered, thanks to pruning the complexity of the neural model
s considerably reduced, is has good generalisation abilities.

It is an interesting question if a linear model with constant
arameters would lead to a similar modelling accuracy. The ques-
ion is important because MPC algorithms which base on linear

odels can be easily implemented and their computational com-
lexity is low. The linear second-order dynamic model

(k) = b1u(k − 1) + b2u(k − 2) − a1y(k − 1) − a2y(k − 2) (54)

s then found. The linear model has the same input arguments as
he neural one (54). Unfortunately, because the process exhibits
ignificantly nonlinear behaviour as shown in Figs. 4 and 5, the
ccuracy of the linear model is low. Fig. 12 compares the output of
he process and the output of the linear model for both training and
est data sets. For the training data set SSE = 73.205301, for the test
ata set SSE = 69.846697.

Neural networks are universal approximators [10], which means
hat a multilayer perceptron with one hidden layer can approxi-
ate any smooth function to an arbitrary degree of accuracy. On
he other hand, the question still remains whether the process
an be represented by a a simpler model than the neural one.
lthough different model structures can be used [5], an interest-

ng idea is to find the state-dependent parameter representations,

al model (dashed line) for training and test data sets.
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Fig. 14. Experiment 1 (the reference trajector

.e. a model whose parameters depend on the state of the process.
or example, in [35] a nonlinear multivariable distillation column
hich has a state-dependent dynamic response similar to that of

he discussed biochemical reactor is modelled by a simple linear
odel, whose parameters depend affinely on process outputs. The

tate-dependent parameter modelling is a well-established tech-
ique. Considering the steady-state characteristic shown in Fig. 4
nd open-loop step-responses depicted in Fig. 5 it is evident that
he behaviour of the process is similar to that of the second-order
ystem whose time constant and stationary gain vary smoothly as
unctions of the state. Hence, the nonlinear polynomial model

y(k) = (b10 + b11y(k − 1))u(k − 1) + (b20 + b21y(k − 1))u(k − 2)

−(a10 + a11y(k − 1))y(k − 1) − (a20 + a21y(k − 1))y(k − 2)
(55)

s found. The model is similar to the linear one (54) but its param-
ters are linear functions of the output. Fig. 13 shows the output
f the process and the output of the model for both training and
est data sets. For the training data set SSE = 7.742230, for the test
ata set SSE = 6.425223. On the one hand, the accuracy of the non-

inear polynomial model is much higher in comparison with the
inear model. On the other hand, the nonlinear polynomial model

s significantly less precise than the neural one.

Considering Figs. 11–13 one can easily see that the neural
odel outperforms both linear and nonlinear polynomial mod-

ls. The neural model is able to very precisely predict behaviour
f the process. Hence, the pruned neural model with K = 5 hid-

T

Fig. 15. Experiment 1 (the reference trajectory 2): t
he GPC algorithm based on the linear model.

en nodes is recommended to be next used in nonlinear MPC
lgorithms.

.3. Yeast fermentation reactor control

The fundamental model (38)–(49) is used as the real process
uring simulations of MPC algorithms. The model is solved using
he specialised solver ODE23S for stiff differential equations [33].
he horizons of MPC are N = 10, Nu = 3, the weighting coefficients
p = 2. (As far as choosing parameters of MPC, there are many
uning criteria in the literature [4,34] and this issue is not dis-
ussed here.) The manipulated variable is constrained, Fmin

ag = 0
/h, Fmax

ag = 200 l/h. In all considered MPC algorithms two reference
rajectories are used. The first trajectory is

ref
r (k) =

⎧⎪⎪⎨
⎪⎪⎩

Tr,0 if k < 3
28.75 ◦C if 3 ≤ k ≤ 49
28.0 ◦C if 50 ≤ k ≤ 99
28.75 ◦C if 100 ≤ k ≤ 149
Tr,0 if 150 ≤ k ≤ 200

(56)

hile the second trajectory is⎧

ref
r (k) =

⎪⎪⎨
⎪⎪⎩

Tr,0 if k < 3
30.25 ◦C if 3 ≤ k ≤ 49
31.0 ◦C if 50 ≤ k ≤ 99
30.25 ◦C if 100 ≤ k ≤ 149
Tr,0 if 150 ≤ k ≤ 200

(57)

he GPC algorithm based on the linear model.
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ig. 16. Experiment 1 (the reference trajectory 1): the MPC-NPL algorithm (dashed l
odel; top: the whole simulation, bottom: enlarged fragments.

To emphasise the accuracy and the computational efficiency of
he discussed MPC-NPL algorithm based on the neural model, in the
ollowing part of the article three MPC algorithms are compared
a) the MPC algorithm based on the linear model (54);
b) the suboptimal MPC-NPL algorithm based on the pruned neural

model (51);
c) the MPC algorithm with on-line Nonlinear Optimisation (MPC-

NO) [17,36,37] based on the same neural model.

g
i
t
u

ig. 17. Experiment 1 (the reference trajectory 2): the MPC-NPL algorithm (dashed line wit
odel.
th circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

As the first MPC algorithm the Generalized Predictive Con-
rol (GPC) algorithm [3] is used. At each sampling instant of
he algorithm a quadratic programming problem is solved. The

PC-NPL algorithm uses the quadratic programming procedure
ramming (SQP) [1] nonlinear optimization subroutine. As the
nitial point for optimisation, Nu − 1 control values calculated at
he previous sampling instant and not applied to the process is
sed.

h circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
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Table 4
The performance index J1 for GPC, MPC-NPL and MPC-NO algorithms

Experiment GPC MPC-NPL MPC-NO

1 85.742 49.586 49.363
2 85.742 58.096 57.883
3
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Table 5
The performance index J2 for GPC, MPC-NPL and MPC-NO algorithms

Experiment GPC MPC-NPL MPC-NO

1 40.417 25.950 25.893
2 40.417 31.911 31.892
3 40.486 26.070 25.991
4 35.446 26.693 26.620
5 37.757 26.589 26.586
6 41.360 26.954 26.900

Fig. 18. Experiment 1 (the reference trajectory 1): parameters of the linearised
model in the MPC-NPL algorithm.

T
T

A

M
M

M
M

M
M

86.090 51.885 51.743
78.871 51.932 51.769
83.499 53.265 53.024
86.221 55.564 55.385

.3.1. Experiment 1
In the first experiment carried out it is assumed that unmea-

ured disturbances are not present and the temperature Tin of the
ubstrate flow entering the reactor (the main disturbance of the
rocess) has its nominal value 25 ◦C.

Because of a highly nonlinear nature of the yeast fermentation
eactor, the accuracy of the linear model is low as shown in Fig. 12.
s a results, the GPC algorithm based on the linear model is unable

o control the process efficiently as depicted in Figs. 14 and 15. The
inear GPC algorithm is very slow, the manipulated variable is quite
luggish, rendering the controlled variable unable to track refer-
nce trajectories fast enough. Hence, it is justified to use nonlinear
odels in MPC rather than linear ones.
Simulation results of the MPC-NPL algorithm and the MPC-

O algorithm based on the same neural model are depicted in
igs. 16 and 17. Both MPC algorithms based on the neural model
re significantly faster than the GPC algorithm based on the linear
odel. Moreover, for both reference trajectories the closed-loop

erformance obtained in the suboptimal MPC-NPL algorithm with
uadratic programming is very similar to that obtained in the com-
utationally demanding MPC-NO approach, in which a nonlinear
ptimisation problem has to be solved on-line at each sampling
nstant.

Differences between MPC-NPL and MPC-NO approaches are
ery small, which means that obtained trajectories of the system are
ractically the same as shown in 16 and Fig. 17. In order to make it
ossible to compare all three examined algorithms (GPC, MPC-NPL
nd MPC-NO), two typical control performance indices are calcu-
ated after completing simulations. The sum of absolute values of
ifferences between the reference trajectory and the actual value
f the controlled variable over the whole simulation horizon

1 =
k=200∑

k=1

|T ref
r (k) − Tr(k)| (58)

nd the sum of squared differences

=
k=200∑

(T ref(k) − T (k))
2

(59)
2

k=1

r r

re calculated. Parameters J1 and J2 obtained in all six considered
xperiments are collected in Tables 4 and 5, performance indices
re calculated for both reference trajectories.

Fig. 19. Experiment 1 (the reference trajectory 2): parameters of the linearised
model in the MPC-NPL algorithm.

able 6
he computational complexity in terms of floating point operations (MFLOPS) of MPC-NO and MPC-NPL algorithms

lgorithm N Nu = 1 Nu = 2 Nu = 3 Nu = 4 Nu = 5 Nu = 10 Nu = 15

PC-NPL 5 0.57 0.68 0.93 1.29 1.81 – –
PC-NO 5 4.10 6.19 13.25 17.71 28.65 – –

PC-NPL 10 0.90 1.03 1.31 1.70 2.26 7.88 –
PC-NO 10 6.28 10.87 19.10 28.50 43.52 180.53 –

PC-NPL 15 1.23 1.38 1.68 2.11 2.70 8.60 21.83
PC-NO 15 8.92 17.93 28.61 42.20 61.64 222.34 587.43
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Fig. 20. Experiment 2 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
model with constraints imposed on increments of the manipulated variable, �Fmax

ag = 3 l/h.

F ine wit
m = 3 l/

M
t
b
t

m

F
m

ig. 21. Experiment 2 (the reference trajectory 2): the MPC-NPL algorithm (dashed l
odel with constraints imposed on increments of the manipulated variable, �Fmax

ag

Table 6 shows the computational complexity of compared

PC-NPL and MPC-NO algorithms based on the neural model in

erms of floating point operations (MFLOPS) for different com-
inations of prediction and control horizons (for both reference
rajectories). In general, the suboptimal MPC-NPL algorithm is

a
t
i
l

ig. 22. Experiment 3 (the reference trajectory 1): the MPC-NPL algorithm (dashed line wi
odel in presence of unmeasured disturbances.
h circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
h.

any times computationally less demanding that the MPC-NO

lgorithm. The control horizon has significantly bigger impact on
he computational burden than the prediction horizon since Nu

s the number of decision variables of the optimisation prob-
em.

th circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
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Fig. 23. Experiment 3 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
model in presence of unmeasured disturbances.

F ine wi
m

o
m
m
a
O

i

F
m

ig. 24. Experiment 4 (the reference trajectory 1): the MPC-NPL algorithm (dashed l
odel, the temperature Tin of the substrate flow entering the reactor is 24 ◦C.

In the MPC-NPL algorithm the neural model (7) is linearised

n-line about the current state of the process (31). The linearised
odel (32) is next used for calculation of the current value of the
anipulated variable as described in Section 2.3. Parameters a1,

2, b1, b2 of the linearised model are shown in Figs. 18 and 19.
ne can observe that changes of these parameters are not big. It

a
i
v
N
e

ig. 25. Experiment 4 (the reference trajectory 2): the MPC-NPL algorithm (dashed line wi
odel, the temperature Tin of the substrate flow entering the reactor is 24 ◦C.
th circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

s because reference trajectories (56) and (57) are defined in such
◦ ref ◦
way that 28 C ≤ Tr ≤ 31 C whereas the steady-state character-

stic shown in Fig. 4 covers the whole range of the manipulated
ariable (0 l/h ≤ Fag ≤ 200 l/h) for which 22.52 ◦C ≤ Tr ≤ 36.03 ◦C.
aturally, the neural model covers the whole range of inter-
st.

th circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
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Fig. 26. Experiment 5 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
model, the temperature Tin of the substrate flow entering the reactor is 26 ◦C.

F ine wit
m

3

t
v
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c

r

F
m

ig. 27. Experiment 5 (the reference trajectory 2): the MPC-NPL algorithm (dashed l
odel, the temperature Tin of the substrate flow entering the reactor is 26 ◦C.

.3.2. Experiment 2

In the second experiment, it is assumed that unmeasured dis-

urbances are not present and the temperature Tin has its nominal
alue, but constraints imposed on increments of the manipulated
ariable are taken into account (�Fmax

ag = 3 l/h is assumed). Such
onstraints are likely to be very important when changes in the

l
s
i
v
M

ig. 28. Experiment 6 (the reference trajectory 1): the MPC-NPL algorithm (dashed line wi
odel in presence of step changes of the temperature Tin of the substrate flow entering th
h circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

eference trajectory are big, they take into account the actuator’s

imitations. The GPC algorithm based on the linear model gives very
low transient responses, exactly the same as in the first exper-
ment (Figs. 14 and). It is because increments of the manipulated
ariable are smaller than 3 l/h. Simulation results of both nonlinear
PC algorithms are shown in Figs. 20 and 21. In comparison with

th circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
e reactor given by (60).
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ig. 29. Experiment 6 (the reference trajectory 2): the MPC-NPL algorithm (dashed l
odel in presence of step changes of the temperature Tin of the substrate flow ente

igs. 16 and 17, the additional constraints result in a slightly slower
utput profile, but the constraints are always satisfied. Constraints
atisfaction is a great advantage when one compares the MPC algo-
ithm described here and an easy to implement controller based on
n inverse model of the process [26].

.3.3. Experiment 3
In the third experiment, it is assumed that unmeasured distur-

ances affect the process and the temperature Tin has its nominal
alue. Disturbance rejection is a very important ability of any
ontrol algorithms as disturbances are unavoidable in practice.
imulation results are shown in Figs. 22 and 23. Because the GPC
lgorithm based on the linear model is slow, for this experiment
nd the the next ones simulation results of nonlinear MPC-NPL and
PC-NO algorithms are only depicted while performance indices

1 and J2 given in Tables 4 and 5 are calculated for all three studied
lgorithms.

.3.4. Experiment 4
In the fourth experiment it is assumed that unmeasured dis-

urbances are not present and the temperature Tin of the substrate
ow entering the reactor (the main disturbance of the process) is
ecreased from its nominal value 25 ◦ C to 24 ◦C. In MPC algorithms
till the same neural model is used (trained for nominal conditions).
imulation results are shown in Figs. 24 and 25. In comparison with
he nominal value of the temperature Tin case (Figs. 16 and 17) the

ain change is the level of the manipulated variable.

.3.5. Experiment 5
In the fifth experiment it is assumed that the temperature Tin of

he substrate flow entering the reactor is increased from its nominal
alue 25 ◦ C to 26 ◦C. Figs. 26 and 27 depict simulation results.

.3.6. Experiment 6
In the sixth experiment it is assumed that the temperature Tin of

he substrate flow entering the reactor changes changes according
o the equation⎧⎪⎪⎪⎪⎨

25.0 ◦C if k < 3
25.5 ◦C if 3 ≤ k ≤ 24
24.5 ◦C if 25 ≤ k ≤ 74
in(k) =⎪⎪⎪⎪⎩ 25.5 ◦C if 75 ≤ k ≤ 124
24.5 ◦C if 125 ≤ k ≤ 174
25.5 ◦C if 175 ≤ k ≤ 200

(60)

Figs. 28 and 29 depict simulation results.

c
i
f
r
M

th circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
e reactor given by (60).

Considering simulation results (figures and values of the per-
ormance indices J1, J2), one can conclude that the GPC algorithm
ased on the linear model is slow and the suboptimal MPC-NPL
lgorithm with quadratic programming gives very similar transient
esponses to those obtained in the computationally demanding
PC-NO approach, in which a nonlinear optimisation problem has

o be solved on-line at each sampling instant.

. Conclusions

This paper discusses the application of artificial neural networks
o modelling and temperature control of a yeast fermentation
iochemical reactor detailed in [26]. Because the process exhibit
ignificantly nonlinear behaviour, the accuracy of the linear model
s low. As a result, the classical PID controller and the MPC algo-
ithm based on a linear model are unable to control the process
fficiently as demonstrated in [26] and in this paper.

The identification procedure of neural models described in this
aper contains two stages. At first, a few neural networks (with dif-

erent numbers of hidden nodes) are trained using available data
ets generated from the fundamental model. The model contain-
ng 5 hidden nodes is chosen as a reasonable compromise between
he accuracy and the complexity. The rudimentary model has 31
eights. Next, in order to reduce the complexity of the neural model

nd to improve its prediction ability the neural network is pruned
sing the Optimal Brain Damage algorithm. As a result of pruning,
2 weights are removed, which means that the complexity of the
udimentary neural network is reduced by 38%. At the same time,
he pruned model has very good generalisation abilities, i.e. the
SE performance index of the pruned neural network for the train-
ng data set is significantly smaller than that of the rudimentary
etwork.

Next, a computationally efficient nonlinear MPC algorithm with
onlinear Prediction and Linearisation (MPC-NPL) [17,18,36,37] is
pplied to the process. It is demonstrated that the algorithm results
n closed-loop control performance similar to that obtained in non-
inear MPC, in which nonlinear optimisation is repeated at each
ampling instant. The computational efficiency of the MPC-NPL
lgorithm is twofold. First of all, the suboptimal algorithm uses
n-line only the numerically reliable quadratic programming pro-

edure, unlike the nonlinear optimisation, which may terminate
n a local minimum, the global solution is always found within a
oreseeable time frame. Secondly, the computational complexity
eduction obtained in the suboptimal algorithm compared to the
PC-NO algorithm in very big as shown in Table 6.
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In this paper MPC algorithms based on neural models are recom-
ended. Such an approach has many advantages. First of all, neural
odels are trained from given sets of process data, it is not neces-

ary to develop complicated fundamental models (in this study the
undamental model is only used as the real process during sim-
lations). Secondly, implementation of the considered MPC-NPL
lgorithm is relatively easy. It is because neural networks have
imple structures and limited numbers of parameters. Moreover,
eural models directly describe input–output relations of process
ariables. It means that complicated systems of differential and
lgebraic equations comprising the fundamental model do not have
o be solved on-line in MPC. It is particulary important in the case of
he considered yeast fermentation process because its fundamental

odel is stiff, the specialised solver for stiff differential equations
hould be used.
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